Comp 341/441 - HCI

Spring Semester 2020 - Week 13

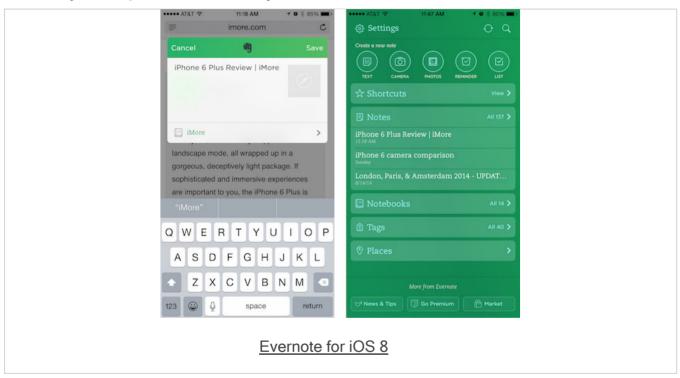
Dr Nick Hayward

intro

- consider some of the underlying design principles that help guide our designs
- eg: Don Norman's design principles for usability
- Norman, D. The Design of Everyday Things. 1988.
- Norman introduced a set of basic design principles and concepts
- consistency
- visibility
- affordance
- mapping
- feedback
- constraints

consistency

- one of the primary ways our users learn is by discovering patterns
- new situations easier to learn by reference to existing patterns of knowledge
- Consistency is key in helping our users recognise and apply such patterns
- overall, things that look the same should perform the same general way
- same button, same colour normally infers same pattern of interaction and usage
- behaviour and actions should also follow a similar pattern
- sound, animation, vibration etc should follow a similar pattern for users
- design inconsistency can cause confusion and overload for our users
- memorisation of exceptions may also increase user resentment towards the app
- internal design and interaction consistency crucial for our users
- external consistency equally important and useful
- consistency between OS and app design guidelines


Image - Principles for Usability

Evernote

This is an image of the popular note-taking application, Evernote, on iOS 8.

questions to consider

- What does it tell us about the consistency of the app?
- looking at the possible actions available within this app screenshot, how would you expect consistency to be used?

Source - Evernote

Principles for Usability - Consistency

Fun exercise - part 1

Consider a company's online services, which are available as both a responsive web application and mobile app. e.g. a mix of music and video streaming and editing...

Then, outline the following

- default consistency considerations for UI design explicit
- subtle consistency considerations for UX implicit
- difference between internal and external consistency for these apps
- consider both web and mobile apps...

visibility

- users normally learn app functionality by visually inspecting the UI
- eg: available menus, menu items, icons, buttons, links, tools etc...
- sequential tasks should be well labelled and navigation obvious
- next button obvious, and highlighted
- usability and learnability naturally improved when options and commands clear and visible
- controls should be easily visible, contextually appropriate, logically placed
- functionality within an application that is not visually represented often hard to discover
- keyboard shortcuts often a bad choice for sole command option
- · shortcut combinations often noted in visual menus
- visibility does not, necessarily, infer that all options and functions be graphically represented
- impractical for many complex applications
- need for careful, considered design choices and contextual awareness

Video - Photoshop

contextual menus

questions to consider

- How does this simple, yet powerful design feature improve usability?
- How are we helping our users by offering such contextually aware features?

Photoshop: Selecting from a contextual menu

Principles for Usability - Visibility

Fun exercise - part 2

Continue the design of a company's online services, which are available as both a responsive web application and mobile app...

Then, outline the following

- general consideration of visibility from the web app to the mobile app
- contextual use of visibility in each app's UI
- example of visual perspective in each app UI and UX

affordance

- a visual attribute or physical property of a given object or control
- gives the user clues to the operation or functionality of an object or control
- system parts manipulated to allow a user to interact with the given system
- eg: a door handle
- shape of door handles, the nature of the door itself present clues to functionality
- visual clues can be used to show UI element functionality
- eg: make controls, buttons etc appear clickable and ready for interaction
- add some highlight to show a user that a submit button is ready for a completed form
- design conventions developed for a reason
- offer a useful reminder of how patterns can easily be developed relative to a UI
- blue underline for links on a web page


Video - Principles for Usability

material design

Again, we return to Google's recent design changes based upon its Material design guidelines.

question to consider

How are they promoting affordance within Material design?

Google's Material Design

Principles for Usability - Affordance

Fun exercise - part 3

Continue the design of a company's online services, which are available as both a responsive web application and mobile app...

Then, outline the following

- consideration and promotion of affordance in the UI
- consideration and promotion of affordance in the UX
- any necessary differences between the web app and mobile app

mapping

- expected relationship between a performed action and the expected result
- mapping between a given control and its behavioural effect
- such mappings should be logical, explicit, and straightforward
- descriptive labels, icons etc on buttons, menus...
- controls should be positioned in a logical manner
- adhering to conventions where possible
- many UI guidelines, real-world examples to help guide our design choices
- modifications of expected conventions will cause unnecessary issues for users
- where necessary, reinforce with training and help...

Principles for Usability - Mapping

Fun exercise - part 4

Continue the design of a company's online services, which are available as both a responsive web application and mobile app...

Then, outline the following

- UI conventions and *mapping*, which migrate effectively from web app to mobile app
- UI conventions and mapping, which do not migrate effectively from web app to mobile app

feedback

- plays a crucial role in reinforcing users' perception, expectations, general experience...
- principle of feedback states that designers should offer users confirmation or acknowledgement for the result of an action
- good or bad, successful or unsuccessful
- distinguish two types of feedback
 - activational feedback
 - o provides evidence that a given control was actioned successfully.
 - o e.g. a button pressed, menu item selected, slider control moved to a new position
 - o feedback may be offered visually, in a tactile manner for physical controls, an audible alert
 - behavioural feedback
 - o provides evidence an action etc has had an effect of the application, system...
 - e.g. app closes an open, active window, shows a dialog window and status message, audible sound...

Video - Principles for Usability

material design

questions to consider

- where is feedback shown in the UI and interaction?
- how are they showing feedback to the user within the UI?
- will it reinforce user actions within an application's UI?

Google's Material Design

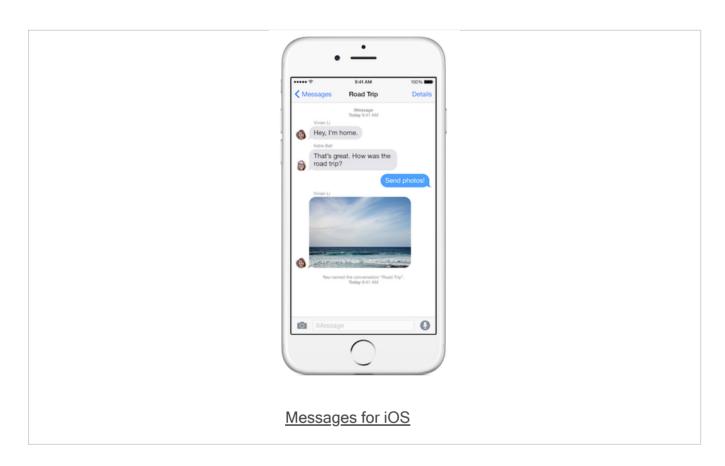
Principles for Usability - Feedback

Fun exercise - part 5

Continue the design of a company's online services, which are available as both a responsive web application and mobile app...

Then, outline the following

- activational feedback in the UI and UX for the web app and mobile app
- behavioural feedback in the UI and UX for the web app and mobile app
- role of consistency and affordance in these design choices for both web app and mobile app


constraints

- apps and interfaces need to be designed and tested to prevent invalid states
- incorrect, invalid user interaction, invalid actions...
- constraints may take various forms
- check correct relationships between elements and actions
- check elements active only as needed
- actions only performed when default data etc available
- menu items active relative to contextual requirements
- physical products often display such constraints

Image - Principles for Usability

Message app on iOS

Constraints relative to type of messaging within Messages app on iOS.

Source - Apple

Principles for Usability - Constraints

Fun exercise - part 6

Continue the design of a company's online services, which are available as both a responsive web application and mobile app...

Then, outline the following

- variant constraints in UI design for the web app and mobile app
- role of feedback to promote constraints in the UI design for the web app and mobile app
- role of UI conventions and mapping to help promote UX constraints in the web app and mobile app

naming

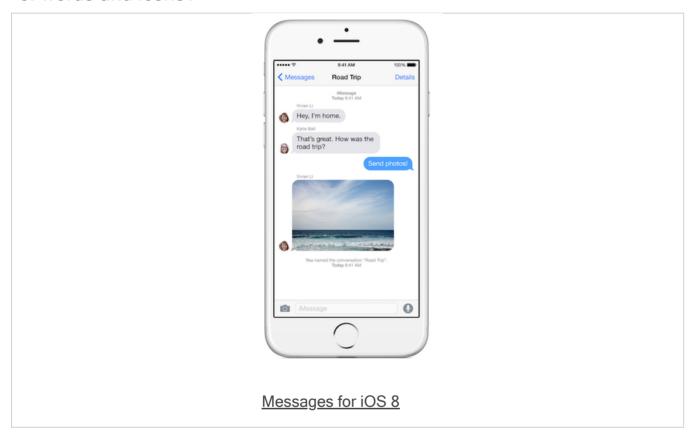

- names and labels key aspect of human communication, thought, understanding...
- also an important consideration in design
- naming helps users understand the application
 - their current location relative to navigation
 - the data and information they are viewing
 - action they can and cannot perform...
- good naming helps a user form a correct mental model
- do not confuse naming with the use of technical jargon and terms
- precise, consistent naming helps us form unambiguous instructions, help, feedback...
- naming helps identify as well as differentiate between aspects of the design and functionality
- names should be unique relative to the context and the application
- namespaces are useful relative to application design and development

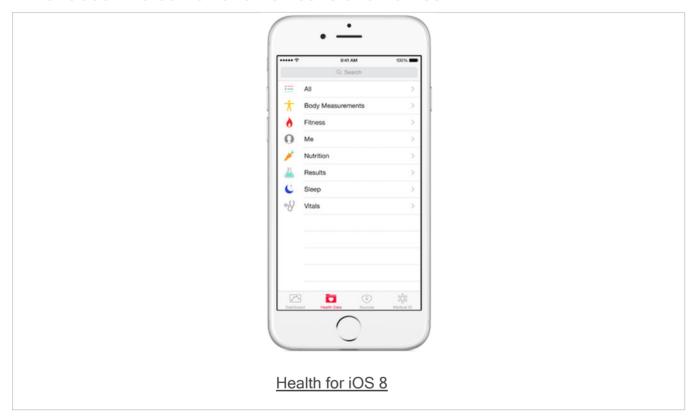
Image - Principles for Usability

good(ish) naming

questions to consider

- what do you notice about the naming scheme for the Messages app?
- does it make a difference to the clarity of this scheme by Apple's mixed use of words and icons?

Source - Apple


Image - Principles for Usability

bad(ish) naming

So, this time we're looking at the Health app for iOS.

questions to consider

- do you like the naming scheme for this app?
- what about the combination of icons and names?

Source - Apple

naming guidelines - a few thoughts

- does the name accurately reflect and describe its intended target?
- consider the action of the element relative to the name
- is the name clear, concise, and free of ambiguity?
- use concise, easy to remember names
- better than longer, hard to remember descriptions
- does the name inherently assume prior knowledge from the user?
- consider naming relative to perceived domain knowledge
- acronyms are useful, but assume prior knowledge of the domain
- be careful when using acronyms, and consider cultural bias
 e.g. VAT well known in Europe
- carefully consider capitalisation, and ensure consistency for chosen pattern
- e.g. This Is Capitalised...This is Capitalised...This is not Capitalised (fully)...
- users should be able to pronounce a name...not helpful if they have to check first

Image - Principles for Usability

cultural naming concerns

Source: Calpis | Pocari Sweat

Image - Principles for Usability

bad naming and icon

Here we have the iOS 6 and iOS 8 icons for the Foursquare app. Firstly, the name foursquare was often used to refer to a game such as handball or a slightly more violent version often used in physical education or gym classes at school.

Secondly, notice how the app's icon has changed over time.

questions to consider

- what does the iOS6 icon remind you of?
- how have they modified the design for the iOS 8 icon? What are they trying to suggest?

Positive user experience

- we need to be able to identify traits of a positive user experience
- conversely, understanding a negative experience is also helpful
- application allows a user to feel they are in control
- helps develop a sense of confidence and competence with the application
- helps encourage high productivity and efficiency
- enables and encourages our user to develop a sense of flow
- allows simple, routine tasks to be completed as quickly and easily as possible
- produces valid, useful output for the user
- user feels confident with the validity of produced results, calculations...
- considered aesthetically pleasing
- exhibits acceptable, sufficient performance to avoid unnecessary delays and waiting
- stable and reliable for the user...no blue screen of death
- makes it easy for a user to correct or modify any errors, mistakes...
- inspires trust and confidence in the user with logical, well-ordered design, navigation...

Negative user experience

- application leaves a user with a sense of feeling a lack of control
- overwhelming the user, creating a sense of incompetence and inadequate ability
- hinders the user from improving productivity and general efficiency
- prevents a sense of flow
- simple tasks and routine patterns prove overly complicated for the user
- output from the application is flawed, incorrect, poorly formatted...
- the app may produce unreliable results and calculations
- the UI design is aesthetically disorganised, cluttered, unappealing...
- slow in performing tasks, and exhibits unnecessary delays and lags in performance
- unstable, buggy, and prone to crashing...
- user loses data due to poor performance
- excessive complexity and difficulty in general functionality
- too much work involved to use the application in general
- design that conflicts with a user's perception of previous applications, iterations of a design, and competing products

Violating Design Principles

- issues that arise in usability
- consequence of poor interpretation, implementation, or misunderstanding general design principles
- reconsider Norman's design principles
- lack of consistency
- poor visibility
- poor affordance
- poor mapping
- insufficient feedback
- lack of constraints

Designing an interaction concept

intro

- app's interaction concept
- basic summary of our base, fundamental idea of how the user interface will actually work
- describes presentation of the UI to the user
- general interaction concepts that allow a user to complete tasks
- inherent benefit is that it will often highlight initial usability issues
- including navigation, workflow, and other carefully considered and planned interactions
- every aspect cannot be defined and outlined at the initial design stage
- follow a more agile approach instead of formal specification documents
- prototyping a particularly effective method for
- testing different design ideas
- receiving feedback through peer reviews and associated usability testing
- representing and communicating intended design to a client etc
- lightweight written records as supplemental and supporting material

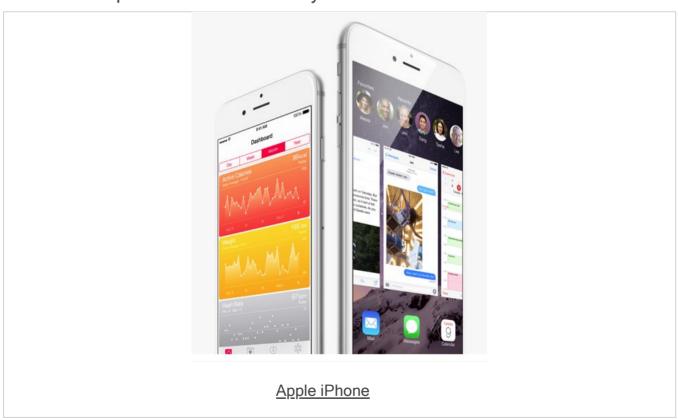
Designing an interaction concept

analysis of interaction concepts

- interaction styles
- information architecture basics, which often include the following
- a data model
- a naming scheme, or defined glossary of preferred names and labels
- a navigation scheme
- a search and indexing scheme
- an outline of a framework for interactions and workflow
- an outlined concept for transactions and any necessary persistency
- AND, a framework for the general visual design of the application

Designing an interaction style

- app's interaction style
- fundamental way it presents itself to a user to allow interaction with available functionality
- many different concepts for interaction styles and overlap
- many will employ a variety or combination of these interaction styles
- an application might present the following styles to its users
- menu driven options user is able to select options from menus, sub-menus
- forms user able to enter data, respond to queries by completing forms
- control panel options may show data visualisations, summaries, quick access options
- command line allows expert, power users to control the app using commands and queries
- conversational input user may interact in a back-and-forth dialogue or conversational style
- $\circ\,$ a sense of question asked and reply returned
- direct manipulation direct user manipulation of objects within the app on the screen
- consumption of content app is simply a way to consume content
- o e.g. e-Book readers, music and video players...
- an app will normally use a combination of the above interaction styles


Image - iPhone

considerations of mobile application interaction styles

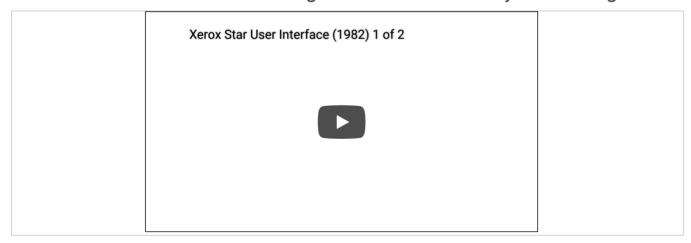
Consider for a moment some of the differences you may encounter in designing an application for mobile vs web.

questions to consider

- what are some of the immediate differences in possible interaction styles?
- how do we consider such interaction styles relative to hardware?
- if we were designing an app for both mobile and web publication, how might we limit the potential interaction style differences?

Source - Apple iPhone

Video - Interaction Style


Xerox Star

The first GUI demonstrated for the Xerox Star.

Notice the interaction options for this system, including the introduction of a **mouse**, a customised keyboard, and the nature of the UI for the system.

questions to consider

- what did you notice about the expected interaction with this demo UI?
- in particular, the use of the keyboard relative to the UI?
- what was the expected interaction style for the original mouse design?
- what are the benefits for the move and copy keys for this system?
- what are the obvious shortcomings of this interaction style and usage?

Video - Interaction Style

Macintosh UI

The Macintosh UI is often considered, incorrectly in some respects, as a copy of the previous Xerox UI. As you'll see in this demo, it might be better described as a logical evolution of some of this UI, which addresses issues with interactions noted for the Xerox UI.

questions to consider

- after reviewing this video, what is your first impression of the UI?
- i.e. what are the main differences in interaction style compared with the Xerox UI?
- why do you think this incremental modification to mouse usage was introduced?

Video - Interaction Style

Microsoft HoloLens 2

So, we're now moving to what Microsoft calls **Instinctual interaction**. This is a demo for HoloLens 2, as shown recently at Mobile World Congress in Barcelona, 2019.

It's an interesting demo, and showcase of interaction perceptions by users.

questions to consider

- obvious question, but what has actually changed from standard desktop interactions to those shown for HoloLens 2?
- what hasn't changed? Or, effectively, what has migrated to this interaction style?

Resources

- Carstens, A., and Beck, J. Get ready for the gamer generation. Tech Trends 49. PP.22-25. 2005.
- Cooper, A. et al. About Face 3: The essentials of interaction design. Wiley.
 2007.
- Nielsen, J. Heuristic evaluation. Usability inspection methods. New York.
 John Wiley and Sons. P. 30. 1994.
- Tyldesley, D.A. *Employing usability engineering in the development of office products.* Computer Journal, Vol. 31. No. 5, PP. 431-436. 1988.