Comp 341/441 - HCI

Spring Semester 2020 - Week 2

Dr Nick Hayward

- standardising an interface or localising...
- local issues arise from cultural misunderstanding
 - Cardiff City Football Club change their colours...then change them back again
 Report

This is a very interesting consideration for interface design.

More to come later in the semester.

The many fields of HCI

Not just computer science and design...

HCI - 2

HCI Components

- Guidelines
- Methods
- Models
- Principles
- Techniques
- Theories

HCI is

- Creative
- Design aware
- Evaluative

Design

- design is all around us
 - art, music, culture in general
- to be good designers we have to appreciate the arts
- understand the rich history of graphic design
 - its trends, products, and leading figures
- Vimeo Milton Glaser Intro (http://vimeo.com/11577085)

Perception

- colour perception in humans
 - *inherent strengths and weaknesses*
- a few limitations in everyday lives
- considerations as UI designers
 - presentation of colours affects a user's ability to recognise and distinguish them
 - display influences a user's perception of colour
 - $\circ~$ eg: their monitor, screen or other viewing device
 - user's vision optimal at detecting contrasts, edges
 - not absolute brightness
 - some users may have some degree of colour-blindness

Image - Display performance - 1

A comparison of glare (source: Amazon)

Image - Display performance - 2

Reducing glare - Apple iPad Air 2 (source: Apple)

Rods and Cones

- retina at the back of the eye is used for focusing images
- retina has two types of light receptor cells
 - known as rods and cones
- rods detect light levels, but not colours
- cones detect colours
- three types sensitive to red, green, and blue light
- often compared to video cameras, monitors...

Image - Colour & Vision - 3

The Human Eye (source: DoveMed)

Modern Environmental Influences

- we need to consider the effect of environmental conditions on human vision
- modern working and living spaces
- rods are sensitive to the environment's overall brightness
- three types of cones sensitive to different frequencies of light
- bright artificial lights dramatically reduce the use of rods
- rods designed for low levels of light
- navigating low-light environments
- bright artificial lights max out our rods
- rods provide no real useful information
- vision becomes reliant on input from cones

Image - Colour & Vision - 5

The Human Eye (source: Verilux)

How we see color - Colm Kelleher	

TedEd - How we see color

Source - TedEd - How we see color - YouTube

Image - Colour & Vision - 6

Visible Light Spectrum (source: Wikimedia)

- S-cone = short-wavelength sensitivity
 - sensitive to light over almost the entire range of visible light
 - most sensitive to the middle (yellow...) and low (red...) frequencies
- M-cone = middle-wavelength sensitivity
- less sensitive than S-cones
- sensitive to light ranging from high-frequency (blues...) through middle frequency (yellows & oranges...)
- L-cone = long-wavelength sensitivity
 - less sensitive than either S or M-cones
 - most sensitive to upper end of visible light spectrum (violets through blues...)
 - our eyes are less sensitive to violets through blues than other colours

Combinations in the brain

- our brain works on the principle of subtraction
- visual cortex at the back of our brain does the work
- neurons subtract signals coming along the optic nerves from S and M-cones
 produces red-green *difference* signal channel
- *neurons subtract signals from L and S-cones* produces yellow-blue *difference* signal channel
- third set of neurons as the signals from S and M-cones
 produces an overall black-white, or luminance, channel
- three channels known as *colour-opponent* channels

Sensitivity

- our vision is now much more sensitive to differences in colour and brightness
 - greater sensitivity to contrasting colours and edges
 - less sensitivity to absolute brightness levels
- greater sensitivity to contrast is an advantage
 - more easily discern objects in varied light
- sensitivity to colour contrasts rather than absolute colours
- allows us to discern colour of an object in bright light or shade

Optical Illusions

Grey square optical illusion - Edward H. Adelson (source: Wikipedia)

Optical Illusions

Grey square optical illusion - Edward H. Adelson (source: Wikipedia)

Grey Square Optical Illusion - Source: YouTube

Shade and Shadow

- on the 2D plane
 - we often struggle to understand why the two colours are the same
- importance and effect of shade
 - its effect on the brain's perception of colour
- our brain is compensating
 - for the shadow &
 - adjusting the colour of square B
- our eyes see the squares as the same grey colour
- our brain adapts perception
 - to match what we think is actually the real representation
 - *i.e. real representation of colours and square B*

Image - Vision & Contrast - 6

Chiaroscuro

Supper at Emmaus, Caravaggio. Further details

Scotoma - The Da Vinci Code - Source: YouTube

Colour presentation

Colour Presentation (source: National Geographic - Modified)

Presentation factors

colour patch size

- harder to discern colour as objects get smaller or thinner
- text is a good example of thin rendering
- text colour is often hard to discern e.g. black and navy...

paleness

• as colours become more pale, it's harder to differentiate similar tones

separation

- as colour blocks become more separated
- $\circ~$ harder to determine their colours
- $\circ\;$ particularly true with eye motion from one colour block to another

a few suggestions

A few things to avoid in images & graphics

- try to avoid overly pale colours
- avoid pale colours juxtaposed
- avoid pale colours for smaller blocks or zones
- often simply lost in the noise of larger zones and blocks
- carefully consider chosen colours for charts, graphs, infographics...

colour blindness

- does not infer an inability to see colours
 - a defect with one or more colour subtraction channel
- makes it difficult to distinguish certain pairs of colours
- most common form of colour blindness is lack of red-green perception
- ~8% of men & ~0.5% of women suffer
 - source: Wolfmaier, 1999

human colour perception

Key

- left = normal human colour vision
- right = human Red-Green colour blindness

Colour Blindness

Colour Blindness - Red-Green (source: Ask a Mathematician / Ask a Physicist)

Colour blind

'No Such Thing as Color - what it's like to be color blind' Source: YouTube

colour differentiation & impact

- consider data visualisation
 - we may use colour to differentiate quantity, scale, percentages...
- for a person with red-green colour blindness
- impacts their ability to discern such data differentiation solely based upon colour
- we may rectify this issue in at least two respects
- modify our colours to match those perceived by red-green colour blindness
- offer supporting data and explanation for the visualisation
- not always possible to create a full data visualisation for colour blindness
- e.g. one that easily differentiates such quantities and values
- due to limited palette for red-green colour blindness

colour differentiation

Colour perception (source: Okabe, M & Ito, K. 2008)

other issues to consider...

Other issues to consider...

- ambient lighting has a direct impact upon a user's display
- washed out, distorted colours
- light and dark areas may persist
- mobile & wearable considerations
- display viewing angle affects a user's interpretation of colour
- cheaper, non-IPS displays offer poor viewing angles and colour shifting
- mono or greyscale displays directly influence design choices
- variation in colour across competing display technologies
- deeper blacks, richer colours, varied viewing angles

The Bible with Sources Revealed - Source: Amazon

Colour suggestions

- subtle colour differences versus saturation, brightness, and hue
- test in monochrome to discern zones of coloured differences
- distinctive colours aid a user's visual system in the combination of colours and visual recognition
 - black, white, red, green, yellow, and blue
- try to avoid colour pairs that colour blind people can't distinguish
- eg: dark red vs black, dark red vs dark green, blue vs purple, and light green vs white
- try those colours against yellows and greens
- try adding supporting recognition to colours within your interface
- eg: icons, keys, notes...

Resources

- Laing, R.D., Phillipson, H. & Russell Lee, A. *Interpersonal perception: a theory and a method of research* Tavistock Publications. 1966.
- Okabe, M. & Ito, K. Color Universal Design (CUD) How to make figures and presentations that are friendly to Colorblind people.
 - J Fly. 2008. http://jfly.iam.u-tokyo.ac.jp/color/.
- Waloszek, G. Vision and visual disabilities: An introduction. SAP Design Guild. 2005.

http://www.sapdesignguild.org/editions/highlight_articles_01/vision_physiology.asp

 Wolfmaier T. *Designing for the color-challenged: A challenge.* ITG Publication. 1999.