Comp 341/441-HCI

Spring Semester 2020 - Week 2

Dr Nick Hayward

Cultural considerations...

- standardising an interface or localising...
- local issues arise from cultural misunderstanding
- Cardiff City Football Club change their colours...then change them back again
- Report

This is a very interesting consideration for interface design.

More to come later in the semester.

The many fields of HCl

Field of HCl

Not just computer science and design...

HCl Components

- Guidelines
- Methods
- Models
- Principles
- Techniques
- Theories

HCl is

- Creative
- Design aware
- Evaluative

Design

- design is all around us
- art, music, culture in general
- to be good designers we have to appreciate the arts
- understand the rich history of graphic design
- its trends, products, and leading figures
- Vimeo - Milton Glaser Intro (http://vimeo.com/11577085)

Colour \& Vision - 1

Perception

- colour perception in humans
- inherent strengths and weaknesses
- a few limitations in everyday lives
- considerations as UI designers
- presentation of colours affects a user's ability to recognise and distinguish them
- display influences a user's perception of colour
- eg: their monitor, screen or other viewing device
- user's vision optimal at detecting contrasts, edges
- not absolute brightness
- some users may have some degree of colour-blindness

Image - Display performance - 1

A comparison of glare (source: Amazon)

Image - Display performance - 2

Reducing glare - Apple iPad Air 2 (source: Apple)

Colour \& Vision - 2

Rods and Cones

- retina at the back of the eye is used for focusing images
- retina has two types of light receptor cells
- known as rods and cones
- rods detect light levels, but not colours
- cones detect colours
- three types sensitive to red, green, and blue light
- often compared to video cameras, monitors...

Image - Colour \& Vision - 3

The Human Eye (source: DoveMed)

Colour \& Vision - 4

Modern Environmental Influences

- we need to consider the effect of environmental conditions on human vision
- modern working and living spaces
- rods are sensitive to the environment's overall brightness
- three types of cones sensitive to different frequencies of light
- bright artificial lights dramatically reduce the use of rods
- rods designed for low levels of light
- navigating low-light environments
- bright artificial lights max out our rods
- rods provide no real useful information
- vision becomes reliant on input from cones

Image - Colour \& Vision - 5

THE EYE

Human Eye

The Human Eye (source: Verilux)

Video - Colour \& Vision

how we see colour
How we see color - Colm Kelleher

TedEd - How we see color

Source - TedEd - How we see color - YouTube

Image - Colour \& Vision - 6

Visible Light Spectrum (source: Wikimedia)

- S-cone = short-wavelength sensitivity
- sensitive to light over almost the entire range of visible light
- most sensitive to the middle (yellow...) and low (red...) frequencies
- M-cone = middle-wavelength sensitivity
- less sensitive than S-cones
- sensitive to light ranging from high-frequency (blues...) through middle frequency (yellows \& oranges...)
- L-cone = long-wavelength sensitivity
- less sensitive than either S or M-cones
- most sensitive to upper end of visible light spectrum (violets through blues...)
- our eyes are less sensitive to violets through blues than other colours

Colour \& Vision-7

Combinations in the brain

- our brain works on the principle of subtraction
- visual cortex at the back of our brain does the work
- neurons subtract signals coming along the optic nerves from S and M-cones
- produces red-green difference signal channel
- neurons subtract signals from L and S-cones
- produces yellow-blue difference signal channel
- third set of neurons as the signals from S and M-cones
- produces an overall black-white, or luminance, channel
- three channels known as colour-opponent channels

Vision \& Contrast - 1

Sensitivity

- our vision is now much more sensitive to differences in colour and brightness
- greater sensitivity to contrasting colours and edges
- less sensitivity to absolute brightness levels
- greater sensitivity to contrast is an advantage
- more easily discern objects in varied light
- sensitivity to colour contrasts rather than absolute colours
- allows us to discern colour of an object in bright light or shade

Image - Vision \& Contrast - 2

Optical Illusions

Grey Square Illusion

Grey square optical illusion - Edward H. Adelson
(source: Wikipedia)

Image - Vision \& Contrast - 3

Optical Illusions

Grey Square Illusion

Grey square optical illusion - Edward H. Adelson (source: Wikipedia)

Video - Vision \& Contrast - 4

Grey Square Optical Illusion - Source: YouTube

Vision \& Contrast - 5

Shade and Shadow

- on the 2D plane
- we often struggle to understand why the two colours are the same
- importance and effect of shade
- its effect on the brain's perception of colour
- our brain is compensating
- for the shadow \&
- adjusting the colour of square B
- our eyes see the squares as the same grey colour
- our brain adapts perception
- to match what we think is actually the real representation
- i.e. real representation of colours and square B

Image - Vision \& Contrast - 6

Chiaroscuro

Supper at Emmaus, Caravaggio. Further details

Video - Vision \& Contrast - 7

Scotoma - The Da Vinci Code - Source: YouTube

Image - Vision \& Contrast - 8

Colour presentation

Colour Presentation (source: National Geographic Modified)

Vision \& Contrast - 9

Presentation factors

- colour patch size

- harder to discern colour as objects get smaller or thinner
- text is a good example of thin rendering
- text colour is often hard to discern - e.g. black and navy...
- paleness
- as colours become more pale, it's harder to differentiate similar tones

- separation

- as colour blocks become more separated
- harder to determine their colours
- particularly true with eye motion from one colour block to another

Vision \& Contrast - 10

a few suggestions

A few things to avoid in images \& graphics

- try to avoid overly pale colours
- avoid pale colours juxtaposed
- avoid pale colours for smaller blocks or zones
- often simply lost in the noise of larger zones and blocks
- carefully consider chosen colours for charts, graphs, infographics...

Vision issues - 1

colour blindness

- does not infer an inability to see colours
- a defect with one or more colour subtraction channel
- makes it difficult to distinguish certain pairs of colours
- most common form of colour blindness is lack of red-green perception
- $\sim 8 \%$ of men \& ${ }^{\sim} 0.5 \%$ of women suffer
- source: Wolfmaier, 1999

Image - Vision issues - 2

human colour perception
Key

- left = normal human colour vision
- right = human Red-Green colour blindness

Colour Blindness

Colour Blindness - Red-Green (source: Ask a Mathematician / Ask a Physicist)

Video - Vision issues - 3

Colour blind

> 'No Such Thing as Color - what it’s like to be color blind' Source: YouTube

Vision issues - 4

colour differentiation \& impact

- consider data visualisation
- we may use colour to differentiate quantity, scale, percentages...
- for a person with red-green colour blindness
- impacts their ability to discern such data differentiation solely based upon colour
- we may rectify this issue in at least two respects
- modify our colours to match those perceived by red-green colour blindness
- offer supporting data and explanation for the visualisation
- not always possible to create a full data visualisation for colour blindness
- e.g. one that easily differentiates such quantities and values
- due to limited palette for red-green colour blindness

Image - Vision issues - 5

colour differentiation

Colour perception (source: Okabe, M \& Ito, K. 2008)

Vision issues - 6

other issues to consider...

Other issues to consider...

- ambient lighting has a direct impact upon a user's display
- washed out, distorted colours
- light and dark areas may persist
- mobile \& wearable considerations
- display viewing angle affects a user's interpretation of colour
- cheaper, non-IPS displays offer poor viewing angles and colour shifting
- mono or greyscale displays directly influence design choices
- variation in colour across competing display technologies
- deeper blacks, richer colours, varied viewing angles

The Bible with Sources Revealed - Source: Amazon

Colour suggestions

- subtle colour differences versus saturation, brightness, and hue
- test in monochrome to discern zones of coloured differences
- distinctive colours aid a user's visual system in the combination of colours and visual recognition
- black, white, red, green, yellow, and blue
- try to avoid colour pairs that colour blind people can't distinguish
- eg: dark red vs black, dark red vs dark green, blue vs purple, and light green vs white
- try those colours against yellows and greens
- try adding supporting recognition to colours within your interface
- eg: icons, keys, notes...

Resources

- Laing, R.D., Phillipson, H. \& Russell Lee, A. Interpersonal perception: a theory and a method of research Tavistock Publications. 1966.
- Okabe, M. \& Ito, K. Color Universal Design (CUD) - How to make figures and presentations that are friendly to Colorblind people.
- J Fly. 2008. http.//jfly.iam.u-tokyo.ac.jp/color/.
- Waloszek, G. Vision and visual disabilities: An introduction. SAP Design Guild. 2005.
http://www.sapdesignguild.org/editions/highlight_articles_01/vision_physiology.asp
- Wolfmaier T. Designing for the color-challenged: A challenge. ITG Publication. 1999.

