Comp 341/441 - HCI

Spring Semester 2020 - Week 9

Dr Nick Hayward

learning to play a game - part 1

- provision of instruction in using and playing a game
- game or simulation requires cognitive effort
- to master the mechanics of the environment
- not always available for learning goals or outcomes
- we know this happens...
- may need to modify game and its general play
- helps maintain a balance between learning and enjoying the game
- one explicit option that often helps
- try to free such mental resources for learning the instructional goals
- free by explicitly teaching how a game or simulation works
- focus of this suggestion is on the mechanics of the interface
- not necessarily the detailed strategic decisions required by the game itself
- computer generated agent can start the game or simulation
- e.g. a tour or example
- how goals are achieved by manipulation of various interface elements
- could actually be as simple as
 - summarising keyboard controls for movement
 - or navigation elements of the interface

learning to play a game - part 2

- also consider providing memory support
- many problem solving or strategy games
- take place over a period of time
- participant accumulates data
- participant may draw required conclusions from experience
- records can also help learners
 - help derive conclusions based on tests, experiments, or examples
- might also consider including process guidance
- as a player progresses through the game
- actions may be recorded so they can view their progress
- view upon completion of a game or segment

learning to play a game - part 3

"students need support in how to interact with geology simulations, particularly support in building and using spatial representations" P.181.

Mayer, R.E., Mautone, P., and Prothero, W. 2002. "Pictorial aids for learning by doing in a multimedia geology simulation game." Journal of Educational Psychology 94. PP.171-185.

- another option is visualisation support
- The Profile Game
- players collect data from a planet whose surface is obscured by clouds
- players draw a line and the computer shows a profile line
- *line indicates how far above and below sea level the surface is at a given point*
- by drawing many lines players learn
- $\circ\;$ whether a section contains a mountain, trough, island...
- players were provided with various aids
- strategy aids in text
- visual aids diagramming various features,
- or no aids
- the best game result
 - players with the visual aids produced the best game performance

- Bryan Alexander Preparing Teachers and Students to Succeed in an Open-Ended Future
- gaming section starts at 2:50 for about 35 seconds...
- then example game usage from 4:37 to 6:20 minutes

- Microsoft's Space Simulator 1994
- President Elect 1988 Editions
- SimEarth 1990
- SimLife 1992

intro

- how do users actually process a page or screen within an application?
- designers and developers interested in working out how to guide a user
- optimise viewing experience for user's focal point
- graphical artists use emphasis and position to draw attention
- cartoonists carefully compose and sketch out cartoons
- draw attention to speech-bubbles etc in correct order...
- we can compose our visual page elements to influence a user's viewing order
- by knowing common patterns for user viewing
 - we can design our apps to accommodate such usage patterns
 - putting relevant information where users actually look

humour

Source - The Curious Dog Log

how do users read a page?

- Western readers follow a pattern for reading
- look at first word in the top left corner of a page
- then scan across the line from left to right
- read the words
- skip to the beginning of the next line
- reader's eyes scan across the line of text
 - not a smooth action
 - user's focus jumps rapidly between given spots on the page
 known as fixation points
 - *jumps from point to point known as saccades* brain does not receive visual information during saccades
 - brain capable of combining images received at each fixation point
 brain sees in a line

perceiving more complicated pages...

- consider page layouts with a more complex design and pattern
- slightly harder to discern exactly how a user's eyes move across the page
- some generalisations we can consider and transfer
 - users get an initial impression of a page or document
 - z-shaped pattern
 - upper left, read title, then scan from upper right
 - $\circ\;$ diagonal to lower left, then scan to lower right
 - $\circ~$ return focal point to areas of interest
- uncertain how flashy, loud images etc will impact this pattern
- tend to break or interrupt a user's pattern of scanning the page
- user searching a page for something specific will often follow a different pattern

studies

- researchers have conducted eye-tracking studies
- using specialised cameras and software
- capable of identifying where and what a user views on screen
- software can replay a user's scanpath
- a series of fixations and saccades
- replay tells us the areas of interest and how long each user viewed
- aggregate scanpaths to form a heatmap diagram
- shows predominant areas of interest to our users

eye tracking advert

Google Chrome Japan Source - YouTube

Eyetracking Web Usability - part 1

- websites present a different pattern for users
- user's tend to follow an F pattern
 - read across the top
 - continue down the screen
 - read lines, at least partial, of text
 - tend to read paragraphs nearer the top of the screen
 - only scan text near the bottom of the screen
- at the bottom of the screen
 - users tend to make an additional quick scan down the left side of the screen
 - left sidebar with links draws particular attention

Source - Nielsen, J. and Pernice, K. *Eyetracking web usability.* New Riders. 2009.

Eyetracking Web Usability - part 2

- images and graphics attract a user's attention
- *tends to be a strong response and reaction when they are relevant and integral to the content*
- users seem able to quickly discern relevant imagery from stock photos
 stock photos quickly overlooked and ignored
- banner ads now tend to be ignored by users
 - users start their F pattern beneath these adverts
 - users begin viewing site beneath these adverts
- users tend to ignore repetitive elements on multiple pages
- eg: logo, navigation bars...
- only look again if they need something...

Source - Nielsen, J. and Pernice, K. *Eyetracking web usability.* New Riders. 2009.

Video - Processing Visual Information

eye tracking

Google Chrome Japan Source - YouTube

Intro

- Gestalt concept allows us to explain how humans perceive and comprehend visual information
- as interface designers such laws can be exploited
- create visual layouts and representations to improve communications, concepts, relationships...
- Gestalt: form, shape...
- refers to the notion of a whole, a body, more than the mere sum of its parts...
- Gestalt in psychology
- notion that humans seek sense of the world by imposing concepts of structure, order...
- Gestalt effect suggests that our mind will naturally attempt to recognise coherent, whole forms...
 - instead of perceiving individually smaller constituent parts that form the whole

Source - Gestalt Principles

Image - Gestalt Laws of Perception

Source - World Wildlife Fund

Max Wertheimer

- 1923, Max Wertheimer's paper Laws of Organisation in Perceptual Forms
- suggested a number of principles or laws that describe how the mind tends to perceive visual information
- for example, there are certain laws useful for consideration relative to design
 - Law of Prägnanz
 - Law of Proximity
 - Law of Similarity
 - Law of Closure
 - Law of Common Fate/Region
 - Law of Continuation
 - Law of Good Gestalt (or Good Continuation)

Law of Prägnanz

- basic law proposed by Wertheimer
- the other laws are derived from this basic law
- Prägnanz can be roughly translated as concise in nature, or a sense of simplicity
- when we perceive a visual scene we try to interpret it,
- *in the simplest, most concise, and easily recognisable form*
- the mind tries to perceive the scene as a whole
- rather than the sum of its constituent parts
- consider an image of a square or rectangle
 - not four sides
 - two horizontal and two vertical

Law of proximity

- items located in close proximity will be perceived as a single entity or group
- items in a group will also be perceived as distinct and different from other items
 - eg: an electronic board with individual lights, bulbs...
- close proximity causes the interpretation in our vision and brain
- change the proximity, and our perception will change as well
- interface design
- separate and isolate similar elements and user's perception of the whole will change
- eg: keep form elements together to avoid isolation and false perception
- coherent presentation of like elements to form the required whole

Source - Web Designer Depot

Law of Similarity

- visual elements that share properties or attributes are perceived as belonging together
- conversely, visual elements with differing properties or attributes will be perceived as belonging to different groups
- eg: jumble elements together squares, circles, triangles, rectangles...
- our vision and brain will try to organise and sort these shapes
- colour will also act as a varying factor
- we will try to group based upon multiple attributes shape, colour...
- file managers are a good example of this principle in interface design
- highlighting and other sort options naturally help our users

Image - Gestalt Laws of Perception

Source - Web Designer Depot

Law of Closure

- lines, or similar representative grouped elements
- more likely to be perceived as a common group if they appear to form
- $\circ~$ the outline or $\ensuremath{\textit{closure}}$ of a given shape or surface
- still considered true if that outline is not complete
- our mind will fill in any gaps in these incomplete shapes
- eg: an incomplete circle
- simpler to see as a circle than an arc of 330 degrees...
- logos and other visualisations often use this trick

Source - APRK Topics

Law of Common Fate

- motion, and elements, moving in the same direction simultaneously
- still perceived as a similar grouping
- drag and drop in interfaces
- uses this perception of grouping
- act of dragging disparate elements imparts concept of group
- the trail of the motion imparts a sense of unity to these interface elements

Image - Gestalt Laws of Perception

Common Fate/Region

Source - [Web Designer Depot]

Law of Continuation

- elements within an interface that appear to be a continuation
- perceived by users as belonging together
- a user's focal point will continue along this line or sequence
- until the end or if broken by something else
- peripheral vision will inform focal point...

Source - Web Designer Depot

Law of Good Gestalt (or Good Continuation)

- our perception of smooth continued lines
- even if they are broken by an intersection or crossing
- eg: multiple lines crossing still perceived as separate single lines
- we see individual lines
- we rarely see the meeting of two angles
- our mind has been taught to perceive the crossing of two lines as simpler
- data visualisation is a good example
- allows us to present multiple lines and expect our users to differentiate
- multiple data results crossing...

Source - APRK Topics

Video - Gestalt Laws of Perception

Resources

- Card, S.K., Moran, T.P. and Newell, A. *The psychology of human-computer interaction*. Lawrence Erlbaum Associates. 1983.
- Carstens, A., and Beck, J. *Get ready for the gamer generation.* Tech Trends 49. PP.22-25. 2005.
- Hays, R.T. The effectiveness of instructional games: A literature review and discussion. Technical Report 2005-004. Washington. 2005.
- Issenberg, S.B., McGaghie, W.C., Petrusa, E.R., Gordon, D.L., and Scalese, R.J. 2005. *Features and uses of high fidelity medical simulations that lead to effective learning.* Medical Teacher 27. PP. 10-29.
- Nielsen, J. and Pernice, K. *Eyetracking web usability.* New Riders. 2009.
- Prensky, M. *Digital game-based learning.* McGraw-Hill. P.17. 2001.
- Van Eck, R.N. *Digital game-based learning.* Educause Review 41. PP.17-30. 2006.