
Design	our	app
Dr	Nick	Hayward

A	brief	consideration	of	useful	hints	and	tips	for	designing	an	application.

Contents

Considerations
Principles	for	usability

intro
consistency
visibility
affordance
mapping
feedback
constraints
naming
naming	guidelines

References

Considerations

As	we	design	a	product's	interface,	we	normally	have	to	think	our	way	through	the	following	salient	points	and
considerations:

Part	1

tasks	and	activities	a	user	can	and	should	be	able	to	perform	with	the	product
i.e.	what	is	the	considered	scope	of	the	product's	functionality?

as	we	consider	each	task,	how	will	the	interaction	develop	and	be	processed?
in	effect,	what	are	the	expected	steps	and	actions	for	the	user	and	the	product?

we	need	to	consider	carefully	the	overall	visual	style	or	appearance	of	the	application
e.g.	visual	design	and	layout	for	the	basic	page	templates	or	screen	layout	-	fonts,	colours,	typography	and
iconography,	any	branding...

what	are	the	defined	places	in	our	application?
e.g.	pages	for	a	website,	navigation	controllers	and	panels	for	mobile	apps,	levels	in	games,	and	so	on...

how	does	our	user	actually	navigate	between	these	places	within	our	application?
as	we	consider	further	our	app's	places,	what	content	and	layout	will	be	presented	to	the	user	in	each	place.

which	controls	are	available,	how	will	they	be	presented,	arranged,	and	so	on?

Part	2

how	will	the	user	interact	with	these	controls?
i.e.	just	mouse	and	keyboard,	is	touch	accepted?
are	there	behaviours	associated	with	these	controls?

are	there	any	events	within	our	application	that	are	not	triggered	by	the	user?
e.g.	timer	driven	events,	remote	calls	and	services,	backup	protocols,	automatic	updates...
are	any	behaviours	actioned	during	such	events?



does	the	application	store,	request,	manage	any	data?
what	type	of	data,	where,	format,	protocols,	services...
how	do	we	present	this	data	on-screen	and	to	the	user?

is	there	a	naming	scheme	for	interface	and	interaction	elements?
e.g.	data,	elements,	places,	objects,	controls,	navigation,	and	any	other	pertinent	concepts...

Part	3

error	handling	scheme	for	the	app
how	will	the	user	be	informed?	will	the	user	have	the	option	to	gracefully	recover	from	errors	etc?

are	there	defined	user	roles	in	the	app?
what	actions,	privileges	are	permitted	per	role?

how	do	our	users	request	or	find	assistance	within	the	app?
is	it	an	active	system	or	passive?	i.e.	interactive	or	reference	based	documentation,	tutorials,	videos,
discussion	forums	etc...

how	is	the	app	structured	to	promote	app	guidance	for	users	through	tasks?
help	for	the	users	to	work	out	how	the	app	actually	works...

Part	4

To	be	able	to	fully	consider	and	plan	for	each	of	these	outlined	points,	we	will	need	to	engage	in	a	number	of	related
tasks.	For	example,	gathering	requirements	and	their	analysis.

We	will	also	need	to	understand	our	user	base,	effectively	the	target	audience	for	our	application.	This	will	include	their
characteristics,	their	requirements,	and	how	they	intend	to	interact	with	the	application.	Therefore,	as	designers	and
developers	we	will	need	to	understand	the	type	of	work	they	want	to	complete,	the	inherent	tasks,	and	the	effective
problem	domain.

To	a	lesser	degree,	this	will	also	require	an	understanding	of	the	technology	requirements.	Such	technology	choices,
for	example	chosen	languages	etc,	will	have	an	impact	upon	how	and	what	we	are	able	to	design	and	provision	for	our
users.

We	will	need	to	consider	prototypes,	mockups,	design	documentation	and	specifications	and,	of	course,	testing.

Principles	for	usability	-	intro

Let	us	return	to	usability,	and	now	consider	some	of	the	underlying	design	principles	that	help	guide	our	considered
designs.

For	example,	we'll	now	consider	some	of	Don	Norman's	design	principles	for	usability.	These	were	detailed	in	his
book,	The	Design	of	Everyday	Things,	first	published	in	1988.	In	this	book,	Norman	introduced	a	set	of	basic	design
principles	and	concepts	that	are	now	considered	foundational	in	the	general	study	of	usability.	These	are	as	follows,

consistency
visibility
affordance
mapping
feedback
constraints

We	will	now	work	our	way	through	these	design	principles	in	greater	detail.



Principles	for	usability	-	Consistency

one	of	the	primary	ways	our	users	learn	is	by	discovering	patterns.	When	presented	with	new	situations,	they
become	more	manageable	and	easier	to	navigate	once	referenced	to	an	existing	pattern	of	knowledge.	This	can
then	be	applied	some	way	towards	the	new	situation.	Consistency	is	key	in	helping	our	users	recognise	and	apply
such	patterns.
Generally	speaking,	things	that	look	the	same	should	perform	the	same	general	way.	For	example,	if	a	user	sees
a	particular	button	in	a	given	colour,	they	expect,	quite	rightly	as	well,	that	a	similar	pattern	will	follow	for	other
examples	of	that	button	and	colour.
Behaviour	and	actions	should	also	follow	a	similar	pattern.	If	there	is	a	sound,	animation,	vibration	etc	for	a	form
action,	then	that	should	be	applied	for	other	forms	and	similar	actions.	We	need	to	create	and	promote	these
patterns	for	our	users.
Inconsistency	in	design	and	application	can	cause	confusion	and	increase	potential	cognitive	overload	for	our
users.	Forcing	users	to	memorise	exceptions	may	also	increase	the	chances	of	users	becoming	resentful	of	our
application,	which	naturally	increases	the	chances	of	them	finding	a	different	application.
internal	application	consistency	is	naturally	crucial	for	our	users,	but	we	also	need	to	consider	external
consistency.	For	example,	if	we	develop	an	application	for	a	specific	OS,	whether	it	be	mobile	or	desktop,	we
should	try	to	conform	to	UI	guidelines	provided	for	that	OS.	Again,	consistency	with	these	platform	guidelines
helps	lessen	the	number	of	concepts	and	patterns	a	user	has	to	learn.

Principles	for	usability	-	Visibility

users	normally	learn	what	functions	may	be	performed	within	an	application	by	visually	inspecting	the	UI	and,
effectively,	determining	what	controls	are	available.

e.g.	the	available	menus,	menu	items,	icons,	buttons,	links,	tools	etc...

for	stepped,	sequential	tasks,	it	helps	the	users	to	understand	and	see	the	next	step	if	the	controls	are	clearly
defined	and	labelled,	and	appear	in	a	consistent	and	obvious	location.
according	to	this	principle,	usability	and	learnability	are	naturally	improved	for	a	user	when	they	are	able	to	easily
see	what	commands	and	options	are	available	to	them.	Therefore,	controls	should	be	clearly	visible,	contextually
appropriate	(i.e.	don't	include	buttons	etc	that	are	not	relevant	to	the	given	task	at	hand...),	and	positioned	where
a	user	would	expect	to	find	them...
functionality	within	an	application	that	is	not	visually	represented	can	be	hard	for	a	user	to	discover.	For	example,
keyboard	shortcuts	will	often	save	a	user	time	and	effort,	in	particular	expert	or	power	users,	but	this	will	often	be
a	poor	choice	as	the	only	way	to	complete	a	given	command	etc...This	is	one	of	the	reasons	why	we	often	see
shortcut	commands	listed	next	to	their	UI	option	in	menus	etc.	They	become	easier	to	view,	associate,	and	learn
as	they	appear	in	an	obvious,	intuitive	visual	manner.

This	concept	of	visibility	does	not,	necessarily,	infer	that	all	options	and	possible	functions	should	be	graphically
represented.	For	many	complex	applications,	this	would	naturally	be	impractical,	and	the	design	would	be	overloaded
with	buttons,	links,	menus	etc.	Therefore,	this	is	where	careful	and	considered	design	is	of	vital	importance.	It
becomes	a	balancing	act	between	functionality	and	practical	design.	It	is	also	a	good	example	of	the	value	of	context,
and	the	application	of	visual	perspectives	relative	to	the	current	task	and	activity.	Adobe's	Photoshop	is	a	good
example	of	this	application	of	design.

Principles	for	usability	-	Affordance

this	is	a	visual	attribute	or	physical	property	of	a	given	object	or	control.	It	gives	the	user	clues	to	the	operation	or
functionality	of	an	object	or	control.	In	effect,	affordances	are	the	parts	of	the	system	that	can	be	manipulated	to
allow	a	user	to	interact	with	the	given	system.	A	standard	way	of	describing	this	is	to	consider	door	handles.	For
example,

the	door's	doorknob	invites	a	user	to	turn	it	to	open	the	door.	We	say	that	the	doorknob	affords	(basically,	it
allows)	turning.
there	might	be	a	kick	plate	on	the	bottom	portion	of	the	door,	which	invites	us	to	push	the	door	as	well.	Again,



it	affords	pushing...
A	grab	handle	on	a	door	invites	a	user	to	naturally	pull	the	door	open	towards	them.	Therefore,	this	handle
affords	pulling.	However,	if	the	door	swings	open	both	ways,	it	may	also	afford	pushing.

What	we	can	see	from	this	example	is	that	the	shape	of	the	handles,	and	the	nature	of	the	door	itself,	present	clues	to
the	door's	functionality	and	how	it	may	be	manipulated	by	a	user.

If	our	door	appears	to	invite	a	pull,	and	then	requires	a	push,	it	will	frustrate	and	annoy	the	user.	We	can,	of	course,
apply	this	design	concept	quite	easily	to	our	UI	designs	and	interaction	patterns.	We	can	use	visual	clues	to	make	our
controls	look	clickable	or	touchable.	One	common	technique	used	to	be	the	application	of	3D,	raised	bezels	to	create
the	impression	of	buttons	to	click.	A	control	or	UI	element	may	also	give	a	user	a	clue	to	suggest	that	it	should	be
clicked	or	used	at	a	given	point	in	an	application	process.	For	example,	a	slight	highlight	for	a	submit	button	as	a	user
completes	a	form.	Again,	we	could	add	a	slight	highlighting	or	change	the	colour	of	the	search	button	as	a	user	starts
to	type	a	query	in	a	search	box,	and	so	on.	We	should	also	be	mindful,	as	noted	earlier,	of	OS	conventions	for	such	UI
controls	and	elements.

Design	conventions	have	been	developed	for	a	reason,	and	they	offer	a	useful	reminder	of	how	patterns	can	easily	be
developed	relative	to	an	interface.	For	example,	it	is	not	inherently	apparent	that	text	underlined	with	blue	is	a	link	on	a
webpage,	but	we	have	become	accustomed	and	programmed	to	accept	this	simple	fact	as	a	given	for	such	text.

Another	example	in	many	applications	is	to	change	the	shape	of	an	item	relative	to	its	available	action	or	option.	For
example,	if	we	again	consider	webpages	we	often	see	a	mouse	cursor	change	shape	relative	to	a	given	link	type.	It
may	change	from	a	hand	to	an	arrow	to	an	hour	glass,	and	so	on.

Principles	for	usability	-	Mapping

If	a	user	clicks	a	button	or	activates	a	control	such	as	a	sub-menu,	there	is,	normally,	a	relationship	between	the
performed	action	and	the	expected	result.	In	effect,	this	is	mapping	between	a	given	control	and	its	behavioural	effect.

As	with	interaction	in	general,	such	mappings	should	be	logical,	explicit,	and	as	straightforward	as	possible.	We	can
generally	achieve	this	result	by	using	descriptive	labels	or	icons	on	buttons	and	menus,	and	by	using	consistency,	as
outlined	earlier.

Again,	controls	should	be	positioned	in	a	logical	manner,	adhering	to	conventions	where	possible.	For	example,	there
are	many	conventions	in	both	UI	design	and	interaction,	and	the	real	world,	that	help	guide	our	design	decisions.	A
slider	bar	normally	represents	sliding	up	to	increase	and	down	to	decrease.	Sounds	obvious,	but	change	it	or	modify	it
in	some	other	sense	and	our	user	is	thrown	out	of	an	agreed	convention.	If	you	do	need	to	change	conventions,	for
whatever	reason,	you	will	also	need	to	ensure	this	is	strongly	reinforced	and	tested	in	the	application's	training	and
learning	material.

Principles	for	usability	-	Feedback

Feedback	plays	a	crucial	role	in	reinforcing	users'	perception,	expectations,	and	general	experience	when	using	an
application.	If	a	user	presses	a	button,	and	there	is	a	delay,	then	the	user	will	need	to	know	whether	it	is	necessary	to
press	the	button	again,	wait,	try	another	option	and	so	on.

The	principle	of	feedback	states	that	designers	should	offer	users	confirmation	or	a	simple	acknowledgement	of	the
result	of	an	action.	Good	or	bad,	successful	or	unsuccessful,	a	user	should	be	given	feedback	of	the	result.	We	are
also	able	to	distinguish	two	general	types	of	feedback,

activational	feedback
provides	evidence	that	a	given	control	was	actioned	successfully.
e.g.	a	button	pressed,	menu	item	selected,	slider	control	moved	to	a	new	position
feedback	may	be	offered	visually,	in	a	tactile	manner	for	physical	controls,	with	an	audible	alert,	and	so	on...

behavioural	feedback
provides	evidence	an	action	etc	has	had	an	effect	of	the	application,	system...
e.g.	an	application	may	close	an	open,	active	window	after	a	completed	successful	action,	a	dialog	window



and	status	message	may	be	shown,	audible	sound,	and	so	on...

Principles	for	usability	-	Constraints

apps	and	interfaces	need	to	be	designed	and	tested	to	prevent	invalid	states
incorrect,	invalid	user	interaction,	invalid	actions...

constraints	may	take	various	forms
check	correct	relationships	between	elements	and	actions
check	elements	active	only	as	needed
actions	only	performed	when	default	data	etc	available
menu	items	active	relative	to	contextual	requirements
physical	products	often	display	such	constraints

Principles	for	usability	-	Naming

Another	consideration

names	and	labels	key	aspect	of	human	communication,	thought,	understanding...
also	an	important	consideration	in	design

naming	helps	users	understand	the	application
their	current	location	relative	to	navigation
the	data	and	information	they	are	viewing
action	they	can	and	cannot	perform...

good	naming	helps	a	user	form	a	correct	mental	model
do	not	confuse	naming	with	the	use	of	technical	jargon	and	terms
precise,	consistent	naming	helps	us	form	unambiguous	instructions,	help,	feedback...
naming	helps	identify	as	well	as	differentiate	between	aspects	of	the	design	and	functionality
names	should	be	unique	relative	to	the	context	and	the	application
namespaces	are	useful	relative	to	application	design	and	development

Principles	for	usability	-	Naming	guidelines

A	few	guidelines	and	thoughts	on	naming...

does	the	name	accurately	reflect	and	describe	its	intended	target?
consider	the	action	of	the	element	relative	to	the	name

is	the	name	clear,	concise,	and	free	of	ambiguity?
use	concise,	easy	to	remember	names

better	than	longer,	hard	to	remember	descriptions

does	the	name	inherently	assume	prior	knowledge	from	the	user?
consider	naming	relative	to	perceived	domain	knowledge

acronyms	are	useful,	but	assume	prior	knowledge	of	the	domain
be	careful	when	using	acronyms,	and	consider	cultural	bias

e.g.	VAT	well	known	in	Europe

carefully	consider	capitalisation,	and	ensure	consistency	for	chosen	pattern
e.g.	This	Is	Capitalised...This	is	Capitalised...This	is	not	Capitalised	(fully)...

users	should	be	able	to	pronounce	a	name...not	helpful	if	they	have	to	check	first



References

Norman,	D.	The	Design	of	Everyday	Things.	Basic	Books.	2013.


